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ABSTRACT

Visualization and analysis of the micro-architecture of brain

parenchyma by means of magnetic resonance imaging (MRI)

is currently considered to be one of the most powerful meth-

ods for interrogating cerebral tissue. Unfortunately, the diffu-

sion tensor imaging (DTI) which is standardly used for esti-

mating the local orientations of brain fibers, is prone to sub-

stantial estimation errors whenever a voxel of interest con-

tains more than one fiber. In such a case, a much more accu-

rate analysis is possible using the high angular resolution dif-

fusion imaging (HARDI) that represents local diffusion by its

apparent coefficients measured as a function of orientations.

In this note, a novel approach to enhancing and modeling

the HARDI signals using multiresolution bases of spherical

ridgelets is presented. In addition to its desirable properties

of being adaptive, sparsifying, and efficiently computable, the

proposed modeling leads to analytical computation of the ori-

entation distribution functions associated with the measured

diffusion, thereby providing a fast and robust analytical solu-

tion for q-ball imaging.

Index Terms— Q-ball imaging, orientation distribution

function, spherical harmonics, ridgelets, and MR-DTI

1. INTRODUCTION

The need for development of more accurate diagnostic tools

for predicting and monitoring cerebral and neurological dis-

eases necessitate the invention of novel methods for imaging

the structure of brain tissue alone with physiological param-

eters of its parenchyma. In magnetic resonance imaging, dif-

fusion tensor imaging (DTI) [1] offers the possibility of ac-

quiring a multitude of exquisite details on the microstructure

of brain tissue via measuring the diffusion of water molecules

across the cerebral fibers. The most advanced application of

DTI is certainly that of fiber tracking in the brain, which, in

combination with functional MRI, seems to be opening a win-

dow on the important issue of connectivity [2].
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Unfortunately, the classical DTI has a fundamental limi-

tation which stems from the fact that it assumes each image

voxel to be occupied by a single fiber. Consequently, the dif-

fusion measurements at the sites when the fibers (or bundles

thereof) cross, touch upon each other, or diverge can be rather

inaccurate. To overcome this deficiency of DTI, high angular
resolution diffusion imaging (HARDI) was proposed in [3],

where the diffusion is measured directly via sampling the MR

signal over a spherical shell in diffusion wavevector space.

Despite of its numerous advantages, until recently, the ex-

tensive use of HARDI has been hampered by the absence of

computationally efficient tools necessary to derive the orien-
tation distribution functions (ODF) corresponding to HARDI

signals. To resolve this problem, Tuch et al. [4] have intro-

duced the q-ball imaging method, in which the ODFs are

estimated by applying the Funk-Radon transform to numeri-

cally interpolated HARDI data. However, the property of this

method of being prone to both interpolation and measurement

errors necessitated further research in this direction. As a re-

sult, the applicability of spherical Fourier analysis to q-ball

imaging was recently demonstrated in [5,6], where ODFs are

recovered by approximating the HARDI data by finite series

of spherical harmonics, followed by analytically computing

the ODFs by virtue of the Funk-Hecke formula. A regularized

version of the above approach was recently proposed in [7] as

well.

Unfortunately, the most valuable property of the above-

mentioned Fourier methods of being analytical seems to be

counterbalanced by the fact that accurately approximating the

ODFs may require a relatively large number of spherical har-

monics to be used per one voxel. Needless to say that this

fact could represent a real problem in the situations, where the

Fourier coefficients representing the ODFs need to be further

used for, e.g., signal interpolation, segmentation, etc. Storing

a relatively large number of representation coefficients may

be another issue that is likely to arise in this case as well.

The main goal of the present note is to introduce a differ-

ent basis of functions using which one can analytically rep-

resent the ODF using a relatively small number of represen-

tation coefficients. Particularly, we introduce and develop the
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concept of spherical ridgelets following the conceptual lines

defined in [8]. It is also shown how the ridgelet approxima-

tions can be used for recovering the ODFs using only about

half an order of magnitude fewer representation coefficients

as compared to the case of spherical harmonics.

Finally, it should be noted that the proposed ridgelet anal-

ysis is different from the one recently presented in [9], where

a “flat” ridgelet transform is applied to localized regions of

the unit sphere. Moreover, our construction is neither similar

to that in [10], where a ridgelet-like transformation is derived

using the theory Riesz potentials. Thus, to the best of our

knowledge, the proposed ridgelet analysis as well as its use

for analytically approximating the ODFs is reported in this

paper for the first time.

2. DIFFUSION FUNCTION AND ODF

In DTI, the diffusion function p(r) defines the ensemble-

averaged probability for a spin to undergo a relative dis-

placement r ∈ R
3 in the experimental diffusion time τ . The

orientation structure of such a diffusion function is commonly

described using the diffusion orientation distribution function
(ODF) ψ(u) which is defined as

ψ(u) =
1
Z

∫ ∞

0

p(αu) dα, (1)

with u being a direction on the unit sphere Ω, and Z standing

for a normalization constant.

The basis of q-ball imaging is formed by the fact that the

ODF ψ(u) can be closely approximated by the Funk-Radon

transform R of the raw HARDI signal evaluated on the unit

sphere Ω in the q-space, viz. [4]

ψ(u) � R [S(q)] =
∫

Ω

δ(u · q)S(q) dη(q), (2)

where S(q) is the HARDI signal, δ is the delta function, the

dot denotes the standard inner product in R
3, and η(q) is the

surface element.

Under some fairly general assumptions, the diffusion sig-

nal S(q) which originates from a voxel containing M fibers,

can be modeled as [7]

S(q) = S0

M∑
k=1

pk exp
{−b (qT Dkq)

}
+ n(q), (3)

where S0 is a constant scaling factor, Dk is a 3 × 3 diffu-

sion tensor associated the k-th fiber, b > 0 is a scanner de-

pendent constant, n(q) accounts for both measurement and

model noises, and {pk} are proportionality constants obeying∑M
k=1 pk = 1. Ignoring for the moment the noise in (3), it

is straightforward to show that the ODF corresponding to the

S(q) in (3) is given by [7]

ψ(u) =
M∑

k=1

pk

Z

√
πb

uT Dku
. (4)

3. REPRESENTATION OF SPHERICAL FUNCTIONS

It is well known that any square-integrable function defined

on the unit square Ω can be represented by a Fourier series

expansion, viz. as a linear combination of spherical harmon-

ics. It is worthwhile noting that the spherical harmonics Yj,n

of degree n (with j = 1, 2, . . . , 2n + 1 ) are defined as the

eigenfunctions of the Beltrami operator Δ∗ on Ω with re-

spect to the eigenvalue −n(n + 1). Moreover, it is straight-

forward to show that the dimension of the “truncated space”

Harm0,...,m = ⊕m
n=0 span{Yj,n}2n+1

j=1 is equal to (m+ 1)2.

Similar to the case of Fourier exponentials over R
d, the

spherical harmonics {Yj,n} have poor localization properties,

being supported over all Ω. Thus, in the case when a function

of interest contains locally supported details, a more informa-

tive analysis is possible by replacing the spherical harmon-

ics by functions with compact support. One way to construct

such a localized basis in by using the kernel function of the

form [11]

K(u,v) = K(u · v) =
∞∑

n=0

A−2
n

2n+ 1
4π

Pn(u · v), (5)

where Pn : [−1, 1] → R is the Legendre polynomial of

degree n, and the sequence {An} is required to satisfy

the summability condition
∑∞

n=0A
−2
n

2n+1
4π < ∞. It can

then be rigorously proven [11] that, given a countable dense

set of points {u1, u2, . . .} on the sphere Ω, the closure of

spann=0,1,...K(un, ·) is dense in L
2(Ω) provided An �= 0

for all n.

Although there exits a variety of different definitions of

K(u,v), for the sake of concreteness as well as due to its ex-

ceptional localization properties in both spatial and frequency

domains, in what follows we use the Gauss-Weierstrass ker-

nel which is defined by

An = Aρ
n = exp{−ρn (n+ 1)}, ρ > 0, (6)

This kernel is depicted in Subplot A of Fig. 1 as a function

of cos(θ) (with −π ≤ θ ≤ π), while Subplot B of the figure

shows K(u0,v) for a fixed u0 and v ∈ Ω. (Note that, in

Fig. 1, larger values of the kernel are represented by reddish

colors, while blue corresponds to zero).

4. SPHERICAL RIDGELETS

The smoothness properties of the Gauss-Weierstrass (GW)

kernel can be controlled via changing the value of ρ > 0 in

(6). Specifically, when ρ→ 0, the kernel converges to a delta

function, whereas when ρ goes to infinity, the kernel’s energy

becomes uniformly distributed over Ω. This fact suggests the

possibility of a multiresolution analysis over Ω with K(u,v)
used as a generating function [11]. However, before applying

such an analysis to the problem at hand, it is instructive to
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Fig. 1. (Subplot A) The Gauss-Weierstrass kernel as a func-

tion of cos(θ); (Subplot B) The same kernel K(u,v) shown

on the unit sphere for a fixed value of u.

take a closer look into the similarity between the GW-kernel

and HARDI signals.

The model (3) suggests that a (noise-free) HARDI signal

is formed as a linear combination of several isotropic diffu-

sion signals. An example of such an isotropic signal is shown

in Subplot A of Fig. 2, where its amplitude is visualized in

the polar coordinate system as a function of orientation. The

ODF corresponding to this signal is shown in Subplot B of the

same figure, where it indicates the orientation of the diffusion

flow. One can see that, as opposed to the GW-kernel, the sup-

port of the HARDI signal is not compact, being “smeared” all

over the great circle perpendicular to the direction of diffu-

sion. Thus, it is reasonable to conclude that representing the

HARDI signal by a linear combination of scaled and shifted

versions of the GW-kernel will require a relatively large num-

ber of representation coefficients.

A sparser representation of HARDI signals is possible by

a different kind of analysis which can be designed as follows.

First, let a ridgelet generating function Φρ to be defined as

Φρ(u,v) =
1
2π

∫
Ω

δ(u · p)K(p · v) η(p) = (7)

=
∞∑

n=0

cρn
2n+ 1

4π
Pn(u · v),

where cρn = e−ρ (n(n+1))
√

(−1)n

π
Γ((n+1)/2)
Γ((n+2)/2) (with Γ being

the gamma function) if n is even, and cρn = 0 when n is odd.

Subsequently, it is straightforward to show that the Funk-

Radon transform Ψρ of Φρ is given by

Ψρ(u,v) = R [Φρ] =
∞∑

n=0

bρn
2n+ 1

4π
Pn(u · v), (8)

with

bρn =

⎧⎨
⎩

2 e−ρ (n(n+1))
[

Γ((n+1)/2)
Γ((n+2)/2)

]2

, if n is even

0, if n is odd
(9)

The functions Φρ and Ψρ are shown in Subplots C and D

of Fig. 2, respectively, for ρ = 0.06. One can see that, simi-

larly to the HARDI signal shown in Subplot A, the energy of

Fig. 2. Subplot(A) Single-filter HARDI signal S(q); (Subplot

B) The ODF corresponding to S(q); Subplot (C) A Gauss-

Weierstrass ridgelet generating function (RGF); Subplot(D)

The Funk-Radon transform of the RDF.

Φρ is concentrated around a great circle (much like the energy

of “planar” ridgelets is concentrated along straight projection

paths across the plane). Moreover, the shape of Ψρ appears to

be in a good agreement with the shape of signal’s ODF.

The above considerations suggest that HARDI signals can

be efficiently represented by a multiresolution analysis gener-

ated by Φρ. Specifically, we define a spherical ridgelet Xj

to be the difference between two differently scaled ridgelet

generating functions, namely

Xj(u,v) = Φρ 4−(j+1)(u,v)− Φρ 4−j (u,v), (10)

with j = 0, 1, . . . Subsequently, at the direction defined by

a given ui and at resolution j, the ridgelet coefficient si,j of

signal S(q) is computed as

si,j = 〈S,Xj(ui, ·)〉 =
∫

Ω

S(q)Xj(ui,q) η(q). (11)

It should be noted that the above inner products can be com-

puted in a closed form manner, using the formula given, e.g.,

by Eq.2 in [9].

Finally, we note that, in practice, HARDI signals are rep-

resented by a finite number of sampling directions {ui}N
i=1.

(Thus, for example, in the case of icosahedron tessellation of

second order, N = 162.) In this case, the spherical ridgelets

can be defined for all non-collenear directions {ũi}, resulting

in the following set of functions

{Φρ(ũi, ·), {Xj(ũi, ·)}j=0,1,...} , i = 1, 2, . . . (12)

The above set is generally overcomplete. The overcomplete-

ness, however, suggests the possibility of sparse analysis, in

which case the data signals are represented by as few regres-

sors as possible. In the current work, in order to find such rep-

resentations, the orthogonal matching pursuit method of [12]
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Fig. 3. (Subplot A) Simulated triple-fiber HARDI signal;

(Subplot B) Ridgelet approximation of the signal; (Subplot

C) The corresponding ODF; (Subplots D1-D10) The approx-

imating ridgelets.

Table 1. MSE (in %) of estimating the triple-fiber ODFs.

SNR = 20 dB 15 dB 10 dB
Spherical harmonics 4.1 4.3 5.2

Spherical ridgelets 3.5 3.9 4.8

was employed due to its exceptional computational efficiency.

An example of the proposed method is demonstrated in Fig. 3,

Subplots A, B, and C of which show a HARDI signal simu-

lated according to (3), its ridgelet approximation, and the cor-

responding ODF, respectively. Subplots D1-D10 of the figure

show the 10 spherical ridgelets used for the representation.

5. SIMULATION RESULTS

In the experimental part of this paper, we compare both the

accuracy and complexity of estimating the ODFs by means of

Fourier and ridgelet analysis. In order to perform the compar-

ison in a quantitative manner, simulated data sets produced

as detailed in [7] were used. The maximal order of spherical

harmonics was set to be equal to 8. Note that, since HARDI

signals are symmetric, only even-order harmonics need to be

used in this case, resulting in the total of 45 Fourier coeffi-

cients per signal. At the same time, the maximal number of

spherical ridgelets was set to be equal to 10.

Table 1 shows the normalized mean squared errors (com-

puted based on the results of 200 independent trials) of es-

timating the simulated ODFs using the spherical harmonics

and spherical ridgelets. One can see that, despite the consid-

erable difference in the number of representation coefficients

used in these cases, the ridgelet analysis provides more accu-

rate estimation results for all tested SNRs. This fact supports

the viability of the proposed ridgelet analysis as an efficient

and accurate tool for analytic q-ball imaging.

6. REFERENCES

[1] D. Le Bihan, E. Breton, D. Lallemand, and et al., “MR

imaging of intravoxel incoherent motions: Application

to diffusion and perfusion in neurological disorders,”

Radiology, vol. 161, pp. 401–407, 1985.

[2] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Al-

droubi, “In vivo fiber tractography using DT-MRI data,”

Magn. Reson. Med., vol. 44, pp. 625–632, 2000.

[3] D. S. Tuch, T. G. Reese, M. R. Wiegell, and V. J.

Wedeen, “Diffusion MRI of complex neural architec-

ture,” Neuron, vol. 40, pp. 885–895, 2003.

[4] D. S. Tuch, “Q-ball imaging,” Magn. Reson. Med., vol.

52, pp. 1358–1372, 2004.

[5] A. W. Anderson, “Measurement of fiber orientation dis-

tributions using high angular resolution diffusion imag-

ing,” Magn. Reson. Med., vol. 54, pp. 1194–1206, 2005.

[6] C. P. Hess, P. Mukherjee, E. T. Han, D. Xu, and D. R.

Vigneron, “Q-ball reconstruction of multimodal fiber

orientations using the spherical harmonic basis,” Magn.
Reson. Med., vol. 56, pp. 104–117, 2006.

[7] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. De-

riche, “A linear and regularized ODF estimation algo-

rithm to recover fibers in Q-ball imaging,” Tech. Rep.

RR-5768, Institut National de Recherche en Informa-

tique at en Automatique, Nov. 2005.

[8] E. J. Candes and D. L. Donoho, “Ridgelets: a key to

high-dimentional intermittency?,” Phil. Trans. R. Soc.
Lond., vol. 357, pp. 2495–2509, 1999.

[9] J.-L. Starck, Y. Moudden, P. Abrial, and M. Nguyen,

“Wavelets, ridgelets and curvelets on the sphere,” As-
tron. Astrophys., vol. 446, pp. 1191–1204, 2006.

[10] B. Rubin, “Spherical Radon transform and related

wavelet transforms,” Appl. Comput. Harm. Anal., vol.

5, pp. 202–215, 1998.

[11] W. Freeden and F. Schreiner, “Orthogonal and non-

orthogonal multiresolution analysis, scale discrete and

exact fully discrete wavelet transform on the sphere,”

Constr. Approx., vol. 14, pp. 493–515, 1998.

[12] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogo-

nal matching pursuit: recursive function approximation

with applications to wavelet decomposition,” in Proc.
the 27th Annual Asilomar Conference on Signals, Sys-
tems, and Computers, Nov. 1993.

942


